INTERNATIONAL JOURNAL OF FORESTRY AND CROP IMPROVEMENT (December, 2010); 1 (2): 94-97

RESEARCH ARTICLE

Received: Sept., 2010; Accepted: Oct., 2010

Effect of integrated nutrient management on nutrient uptake and soil fertility of soybean [Glycine Max (L) Merril]

B.S. GUNJAL, A.D. PAWAR, N.S. UGALE AND S.S. CHITODKAR

ABSTRACT

The uptake of NPK was significantly increased with increased levels of FYM. Further it was observed that nitrogen uptake showd graded response to increase levels of FYM. Recommended dose of fertilizer when applied with organics *i.e.* FYM 5 t ha⁻¹ recorded significantly higher total uptake of N, P and K (218, 28.48 and 125.51 kg ha⁻¹) over the control (135.84, 14.66 and 82.68 kg ha⁻¹). Increasing the soil fertility status (available NPK) upto of 50 kg N + 75 kg P_2O_5 + 50 kg K_2O + 5 t FYM ha⁻¹. (N 237.32, P 26.30 and K 337.03 kg ha⁻¹). The soil fertility status decline in control treatment at initial value of available NPK. This might be owing to increased supply of nutrient source to the crop as well as due to indirect effect resulting from reduced loss of organically supplied nutrient.

KEY WORDS: Integrated nutrient management, Nutrient uptake, Soil fertility.

Gunjal, B.S., Pawar, A.D., Ugale, N.S. and Chitodkar, S.S. (2010). Effect of integrated nutrient management on nutrient uptake and soil fertility of soybean [Glycine Max (L) Merril], Internat. J. Forestry and Crop Improv., 1 (2): 94-97.

INTRODUCTION

Imbalance nutrition is one of the important constraints of soybean productivity in North Indian Plains (Chandel, 1989. Tiwari, 2001). Continuous use of high level of chemical fertilizers has led to problems of soil degradation, which is proving detrimental to soybean production. A crop producing 6,720 kg/ha biomass removed about 614 kg N, 148 kg P and 486 kg K/ha (Nelson, 1989). Therefore, adequate and balanced fertilization is necessary to increase soybean productivity. The supplementary and complimentary use of organic mannures and bio-fertilizer improve soil physical, chemical and biological properties, fertilizer-use efficiency, mitigates short supply of micronutrients, stimulates the proliferation of diverse group of micro-organisms and plays and important role in the maintenance of soil fertility and improves the ecological balance of rhizosphere. Hence, an experiment was conducted to study the performance of soybean with different integrated nutrient management systems in terms of nutrient uptake and soil fertility.

Correspondence to:

B.S. GUNJAL, College of Agriculture, DHULE (M.S.) INDIA

Authors' affiliations:

A.D. PAWAR, N.S. UGALE AND S.S. CHITODKAR, College of Agriculture, DHULE (M.S.) INDIA

MATERIALS AND METHODS

The field experiment was conducted at the Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar during rainy (Kharif) season of 2005. The experimental soil was clayey in texture, contains 0.42% organic carbon, 209.52 kg/ha available N, 21.73 kg/ha available P and 313.20 kg/ ha available K. The experiment consisted of 8 treatments viz., different combination of integrated nutrient management comprised of fertilizer levels. T₁: Control, T_2 : 50 kg N + 75 kg P_2O_5 , T_3 : 50 kg N+ 75 kg P_2O_5 + 25 $kg K_2O$, T_4 : 50 $kg N+75 kg P_2O_5+50 kg K_2O$, T_5 : 50 $kg N + 75 kg P_2O_5 + 25 kg K_2O + 2.5 t FYM ha^{-1}, T_6: 50$ $kg N + 75 kg P_2O_5 + 25 kg K_2O + 5 t FYM ha^{-1}, T_7: 50$ $kg N + 75 kg P_2O_5 + 50 kg K_2O + 2.5 t FYM ha^{-1}, T_9: 50$ $kg N + 75 kg P_2O_5 + 50 kg K_2O + 5 t FYM ha^{-1}$ were laid out in randomized block design with 3 replications. The fertilizer dose of NPK and organic material through urea, single superphosphate, murate of potash and FYM, respectively were incorporated bassally, as per treatment at the time of sowing. The seeds were inoculated with Rhizobium and PSB culture to all treatments before sowing. The gross and net plot size were 4.80 x 3.60 m and 4.20 x 3.00 m, respectively. Sowing was done on 5th July 2005 by dibbling the seeds of soybean variety DS-228 (Phule Kalyani) at spacing of 30 x 10 cm. All recommended management practices were followed. Need-based inter culture and plant protection were